Connect with us

Hi, what are you looking for?

A research team from Rice University has achieved an energy storage breakthrough based on a new, relatively cheap and simple method for manufacturing MoS2.

Energy Storage

Graphene Cousin “Flips” For Energy Storage Breakthrough

A research team from Rice University has achieved an energy storage breakthrough based on a new, relatively cheap and simple method for manufacturing MoS2.

It looks like graphene from above, but flip it on its side and this interesting material reveals a nanoscale sandwich of atoms in three distinct layers. That material would be molybdenum disulfide, and a research team from Rice University has just announced a new energy storage breakthrough based around the sponge-like characteristics of the three-layered edge.

We’re going to drop the h-word up front, as in hydrogen for fuel cells, because the Rice team also foresees an application in hydrogen production. But first let’s check out the energy storage angle.

Rice U energy storage breakthrough

Molybdenum disulfide film (cropped, enhanced) courtesy of Tour Group/Rice University.

Energy Storage Breakthrough For Molybdenum Disulfide

Molybdenum disulfide (MoS2) is a semiconductor consisting of a layer of sulfur atoms trapped between two layers of the brittle, silvery transition metal molybdenum.

The flat side shares the now familiar chickenwire structure of atom-thin graphene, but its layered, relatively thick structure provides it with a more robust edge for both energy storage and catalytic reactions.

The new Rice energy storage breakthrough involved exploiting the properties of the edge, as explained by lead researcher and Rice chemist James Tour explains:

So much of chemistry occurs at the edges of materials. A two-dimensional material is like a sheet of paper: a large plain with very little edge. But our material is highly porous. What we see in the images are short, 5- to 6-nanometer planes and a lot of edge, as though the material had bore holes drilled all the way through.

The Rice team isn’t the first to take advantage of MoS2, a widely used industrial material that has been emerging in clean tech applications including next-generation batteries as well as solar energy harvesters and hydrogen production.


The key challenge is making that leap over the “Valley of Death” from labwork to cost-effective, commercial application, and to do that the Rice team has developed a relatively quick, easy way to manufacture thin films of MoS2 while taking full advantage of the edge properties.

First, the Rice team grew a film of molybdenum oxide onto a layer of molybdenum using a room-temperature process anodization, which is commonly used in metals manufacturing.

Then, conversion to MoS2 was achieved by exposing the film to sulfur vapor at 572 degrees Fahrenheit for one hour.

Yep, that’s it.

Supercapacitor Breakthrough Yes, Battery Breakthrough Maybe

One application tested out by the team is supercapacitors, a type of energy storage device that charges and discharges quickly. Supercapacitors also have a longer lifecycle than comparable rechargeable batteries.

Using the new film, the team created supercapacitors that retained 90 percent of their capacity after 10,000 charging cycles and 83 percent after 20,000 cycles.

Rice U energy storage breakthrough 2

Spongelike structure of molybdenum disulfide film courtesy of Tour Group/Rice University.

They haven’t figure out the battery angle quite yet but Tour foresees that the same anodization process could be applied to battery materials, so we’re giving that a solid maybe for now.

Hydrogen Fuel Cell Breakthrough, Yes

We’ve been all over the issue of hydrogen fuel cells for electric vehicles, and the Rice findings add more fuel to the fire by widening the pathway toward more efficient, sustainable hydrogen production.

Aside from technology and efficiency issues compared to battery electric vehicles the sourcing of hydrogen from fossil natural gas is a big sticking point.

However, alternative sources are emerging, including renewable biogas and the solar-driven production of hydrogen from water.

The Rice breakthrough fits into the latter category. You can get hold of the study online but here’s a snippet from the abstract:

The edge-oriented MoS2 film delivers excellent hydrogen evolution reaction (HER) activity with enhanced kinetics and long-term cycling stability.

Typically, the catalysts used to separate hydrogen from water require platinum, so switching over to a relatively cheap, easily manufactured material would help remove one big obstacle to widespread hydrogen use.

Follow me on Twitter and Google+.

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Spoutible.


You May Also Like

Clean Transport

Once again, European cities are outperforming American ones on the electrification of bus transit. I’ve talked about this before, but nothing has changed and...


Flash Joule heating process recycles plastic from end-of-life F-150 trucks into high-value graphene for new vehicles Originally published by Rice News, courtesy of Rice...

Clean Power

Rice lab’s flash Joule heating extracts valuable elements from fly ash, bauxite residue, electronic waste

Clean Power

A new perovskite solar cell promises high efficiency, low cost, and a long life cycle thanks in part to support from the US Army...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.