Maxwell’s Ultracapacitor Cell Is 300 Times More Vibration Resistant

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Originally Published in the ECOreport

Image at top of page: Maxwell 2.85 v DuraBlue cell – Courtesy Maxwell Technologies
Maxwell 2.85 v DuraBlue cell – Courtesy Maxwell Technologies

According to their press release, Maxwell’s ultracapacitor cell is 300 times more vibration resistant and has 400 times the shock immunity of its competition. The new 2.85-volt, 3400-farad ultracapacitor cell sets a new standard for energy, power and ruggedness. It may also be able to deliver 17% more power and 23% more energy. I had an opportunity to ask Chad McDonald, director of product marketing at Maxwell Technologies, a few questions about their product.

Chad McDonald, director of product marketing at Maxwell Technologies – Courtesy Maxwell Technologies
Chad McDonald, director of product marketing at Maxwell Technologies

Question: What kind of vehicles are these ultracapacitor cells normally used in: trucks, trains, cars or cranes? 

CM: Because of their high power profile, broad operating temperature range and long life, ultracapacitors have a broad application base. Transportation is one of Maxwell’s primary market focuses. Within the transportation market there are many uses, including a wide variety of applications in automotive, mass transit (including bus and rail), engine starting for large diesel trucks and generator sets, just to name a few.

Question: You mentioned using the 2.85-volt, 3400-farad ultracapacitor cell in “alternative fueled” vehicles, but can it be used in petroleum fueled vehicles as well?

CM: Absolutely. In fact, hybrid and plug-in hybrid buses (diesel and CNG/LNG) are among Maxwell’s primary market focuses for the 2.85V, 3,400F cell. In addition, there is a high level of interest in our 2.85V technology from many of the world’s leading automotive manufacturers.

Question: I would like to get an idea what this ultracapacitor cell does. Feel free to use to any qualifiers you wish, but can you tell me how much less fuel a vehicle will need if it uses this ultracapacitor cell?

CM: There is a wide range of fuel savings for vehicles that use our ultracapacitors due to the vast array of implementations and system designs available in the market today. Having said that, many of our hybrid and plug-in hybrid bus customers have seen 20 to 30 percent improvements in fuel economy with our designs.

Question: How much wear do your ultracapacitors save the vehicle?  Or how much longer would the vehicle last? 

CM: Ultracapacitors don’t have a direct impact on the life of the vehicle. However, designs that use ultracapacitors have a much lower total cost of ownership due to the long life of our technology. As an example, the average bus has a life of around eight years. Designs that use batteries would typically need to replace those batteries multiple times during the eight-year life of the vehicle. Ultracapacitors, on the other hand, last the life of the vehicle, eliminating the costs associated with replacement products and the associated labor.

Question: How does your product differ from others on the market? 

CM: Maxwell’s new 2.85V, 3,400F ultracapacitor has several key advantages over other ultracapacitors in the market today. First, we have maintained our industry standard 60 millimeter diameter cell form factor. This makes the design of our cell much simpler and faster for customers who have experience with our previous K2 2.7V ultracapacitor cells. Second, by increasing voltage from 2.7V to 2.85V and capacitance from 3,000F to 3,400F, we have set the new standard for power and energy in the industry standard cylindrical form factor. The 2.85V, 3,400F cell has 17 percent more power and 23 percent more energy. Lastly, we have designed and tested our new 2.85V cell to meet some of the most demanding shock and vibration tests used in transportation markets today. This increased cell ruggedness is a clear differentiator for the demands of the transportation market and positions Maxwell as the clear leader in this space.

Question: Is there some kind of measurement of the amount of charge the vehicle picks up when braking?

CM: As with many applications of ultracapacitors, there is a great deal of variability in this sort of measure depending on the implementation of the design. In many of the cases, our bus customers have seen their systems provide propulsion up to 15 miles per hour (MPH) before the combustion engine is required to kick in. It is this period of acceleration that provides the improved efficiency of the system and the associated fuel savings.

Question: What standard have you set? What was the previous standard and who set it?

CM: Maxwell has again raised the bar in power and energy with 17 percent more power and 23 percent more energy. We have also raised the bar by ruggedizing our cell to meet the demanding shock and vibration requirements of the transportation industry. With the combination of these improvements, Maxwell has again proven its leadership in ultracapacitor technology and has solidified its place in the transportation market.

(Here is Maxwell Technologies’ press release.)


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Roy L Hales

is the President of Cortes Community Radio , CKTZ 89.5 FM, where he has hosted a half hour program since 2014, and editor of the Cortes Currents (formerly the ECOreport), a website dedicated to exploring how our lifestyle choices and technologies affect the West Coast of British Columbia. He is a research junkie who has written over 2,000 articles since he was first published in 1982. Roy lives on Cortes Island, BC, Canada.

Roy L Hales has 441 posts and counting. See all posts by Roy L Hales