Connect with us

Hi, what are you looking for?


Solar Cells

Hyperbolic Metamaterials Could Drive Solar Costs Down, Down, Down

We haven’t checked in on the metamaterials scene in a few months but here’s something that caught our eye. A bigger-than-usual research team spearheaded by Purdue University has developed a new hyperbolic metamaterial that has numerous applications in the optical field, including high efficiency solar cells. While not the only factor in the overall cost of solar power, efficiency gains still play a major role in the steady trend toward solar power as cheap as – and cheaper than – fossil fuels.


Hyperbolic effect in metamaterial courtesy of Purdue University

Metamaterials And Solar Cells

Metamaterials refers to a new class of engineered materials that have precisely designed nanoscale features etched or layered onto their surfaces. In terms of solar cells if you’ve been hearing about “black metals” you’re on the right track.

In the optical field, metamaterials take advantage of the plasmonic effect.  The plasmonic effect refers to clouds of electrons, freed by the presence of light. Given the right surface structure, these electrons can be manipulated to enable more efficient light harvesting.

Among the metamaterials already in development for plasmonic solar cells, back in 2011 we took note of a metamaterial with a nanoscale “waffle” design at Stanford.  Metamaterials designed with nanopillars or nanorods are also in the works.

The New Hyperbolic Metamaterial Solves a 50-Year Problem

One of the obstacles to metamaterials development is that the current metals of choice are gold and silver, which are not compatible with the standard manufacturing process for integrated circuits. They are also not particularly efficient conductors of light relative to other options.

For their solution, the Purdue-headed metamaterial team engineered a nanoscale “superlattice” crystalline structure (superlattice refers to a crystal grown in layers) made of the metal titanium nitride and a semiconductor called aluminum scandium nitride.

Titanium nitride has optical properties that resemble gold, but unlike gold it is compatible with the manufacturing standard (CMOS, for those of you keeping score at home). Titanium nitride is also durable and stable at high temperatures, and it is already known for its amenability to growing in nanoscale crystalline films.

In the current study, each layer is 5-20 nanometers. The team also demonstrated that the layers could get down to a thickness of only two nanometers, which works out to about eight atoms apiece.

According to lead author Bivas Saha of Purdue, this is one of  the first successful demonstrations of the metal/semiconductor combo in decades of research:

People have tried for more than 50 years to combine metals and semiconductors with atomic-scale precision to build superlattices. However, this is one of the first demonstrations of achieving that step. The fascinating optical properties we see here are a manifestation of extraordinary structural control that we have achieved.

The material that behaves like a metal when light passes through in one direction, but it acts like an insulator (aka dielectric) when light passes through in a perpendicular direction.


That’s the “hyperbolic” effect referred to in the title of this piece, as explained by Purdue:

The hyperbolic metamaterial behaves as a metal when light is passing through it in one direction and like a dielectric in the perpendicular direction. This “extreme anisotropy” leads to “hyperbolic dispersion” of light and the ability to extract many more photons from devices than otherwise possible, resulting in high performance.

We Built This Hyperbolic Metamaterial!

Not for nothing, but the research was partly funded by the US Army Research Office and the National Science Foundation.

Follow me on Twitter and Google+.

Keep up with all the latest solar news from CleanTechnica: subscribe to our Solar Energy newsletter.

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.


You May Also Like

Clean Power

The energy-water nexus could take an interesting turn if a new hydrogel doped with carbon nanotubes jumpstarts a solar cell efficiency revolution.

Clean Power

A new record-setting solar cell isn't just another pretty PV face -- it could open up new opportunities for concentrating solar power, too.

Clean Power

A change in chemical composition enabled scientists to boost the longevity and efficiency of a perovskite solar cell developed at the U.S. Department of...

Clean Power

Researchers at MIT have create new solar cell technology that could raise efficiency to as much as 35% -- far above the theoretical limit...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.