Energy Storage

Published on May 12th, 2014 | by Tina Casey


New Graphene + Carbon Nanotube Supercapacitor Rivals Lithium Battery

May 12th, 2014 by  

An international team of researchers has come up with a recipe for a microscale flexible energy storage device made of graphene and carbon nanotubes, which can store enough energy to rival the gold standard, lithium batteries. That’s significant because the device is actually not a battery, it is a supercapacitor that can charge and discharge much faster than a battery.

It’s also significant because the research team has devised a fabrication method that results in a long fiber (long as in 50 meters long, so far). That opens up all sorts of opportunities for weaving the new supercapacitor into clothing to power portable electronics. Since the fiber also doubles as a conductor, it can also be used in place of wires to reduce the size and weight of portable devices, including medical implant.

graphene CNT supercapacitor

Previous study of graphene/CNT supercapacitor (published 2009) courtesy of Case Western.

Batteries vs. Supercapacitors: A Quick Review

Batteries and supercapacitors both store energy, but there’s a catch. Batteries have a higher energy density which means they can store energy for longer periods, but they have low power density. That means they can’t discharge quickly.

Supercapacitors have the opposite problem: their low energy density means they can’t store as much energy, but their high power density enables them to deliver energy rapidly when needed.

The trick to solving the energy density problem for supercapacitors is to find a material with a relatively high proportion of surface area available for energy storage.

That’s where graphene, the “nanomaterial of the new millennium” comes in. A new material discovered just 10 years ago, graphene consists of a sheet of carbon just one atom thick. The two-dimensional structure is basically all surface area, but the notoriously finicky graphene presents a whole raft of challenges for translating its powers into energy storage, photovoltaics, and other fields.

Taming Graphene For A Graphene/Carbon Nanotube Supercapacitor

The schematic above is from a 2009 work on graphene/carbon nanotube hybrid supercapacitors by Dingshang Yu of Nanyang Technological University in Singapore and Case Western’s and Laming Dai, who are also members of the current international research team (China is also participating, through Tsinghua University).

That work tackled a huge problem with graphene. Other efforts had shown that though the hybrid approach was promising, the graphene was not cooperating:

…most of the above-mentioned techniques [for obtaining graphene film] suffer from a lack of the film architecture/property control, leading to the loss of the surface area for energy storage due to graphene aggregation. For energy storage applications, therefore, it is highly desirable to use one-dimensional (1D) carbon nanotubes (CNTs) to physically separate 2D GNs to preserve graphene’s high surface area.

The 2009 study arrived at a self-assembly process to solve the problem, resulting in a graphene/carbon nanotube film.

A Hybrid Supercapacitor Fiber

The current study, led by Yuan Chen of Nayang Technological University and co-authored by Dai, has just been published in Nature Nanotechnology. It details how the team translated the self-assembly technique into a long fiber:

A solution containing acid-oxidized single-wall nanotubes, graphene oxide and ethylenediamine, which promotes synthesis and dopes graphene with nitrogen, is pumped through a flexible narrow reinforced tube called a capillary column and heated in an oven for six hours.

The advantage of this structure is the enormous amount of available surface area for both energy storage and charge conduction, clocking in at a whopping 396 square meters per gram of fiber.

The favorable comparison to lithium was demonstrated in a solid state micro-supercapacitor, which the research team assembled from two graphene/carbon nanotube fibers. With a polyvinyl alcohol/phosphoric acid gel as an electrolyte, the device achieved a density of 6.3 microwatt hours per cubic millimeter.

According to the research team, that compares to a 4 volt/500 microampere-hour thin film lithium battery.

They also found something interesting about how the fibers are arranged. When three pairs of fibers were arranged in a series, the voltage tripled and the time for charge/discharge stayed the same.

However, when three pairs are arranged in parallel, both the output current and the charge/discharge time tripled.

There could also be some significant advantages when it comes to cost and supply chain issues. Compared to lithium, carbon nanotubes and graphene are cheaper and more readily available.

Also lending an assist with favorable cost comparisons, the hybrid supercapacitor appears to have a much longer lifecycle than conventional rechargeable batteries.

The team tested their supercapacitor at 10,000 charge/discharge cycles and came up with a performance retention of about 93 percent. Conventional rechargeables generally lose performance before they hit the 1,000-cycle mark.

To cap it off, the fibers also retained performance when subjected to flexibility and stress tests.

Stay tuned, because the research team is also thinking ahead to applying their new supercapacitors to batteries, solar cells, and microbial fuel cells.

Follow me on Twitter and Google+.

Keep up with all the latest clean tech news from CleanTechnica: subscribe to our newsletter.


Buy a cool T-shirt or mug in the CleanTechnica store!
Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech daily newsletter or weekly newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Tags: , , ,

About the Author

specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

  • John

    OK. It all sounds encouraging. We need a comparison. A Lith battery bank that gets a car 300 miles range. For the same battery density, what would be the range of the graphene supercaps? Or for 300 miles range what percentage of the size would the graphene supercaps be?

  • Chi Zeta

    I’ve been reading about these nanotube capacitors for years but not a hint of when they’ll be available for sale.

    • Κωνσταντίνος Κ.

      probably no in this life 😛

  • Kent Beuchert

    Cotton is where it’s at. And it’s just around the corner.

  • Wayne Williamson

    carbon is much cheaper(pretty much free) than copper. If they can make conductors better than copper and cheaper, I think that is a multi billion if not trillion dollar industry. Thats not even getting into all the other fun stuff that carbon fibers can be used for.
    Lets see Copper demand, 2007 was 18 million tons or 18 billion kilos. At 7 dollars a kilo is 128 billion dollars(ok not trillions;-).

    • Khisanthus

      Carbon is more common, true. But the processing and energy to make it conducting are not trivial.

  • Boris

    Sounds too good to be true, where is the catch?

    • Mint

      Not really. The volumetric density is 6.3 Wh/L, which isn’t even close to that of lithium ion cells (>500 Wh/L). Even tiny button cells are 50 Wh/L.

      It’s only a good result compared to thin film lithium batteries, which apparently don’t scale down well. The applications are pretty limited.

Back to Top ↑