Connect with us

Hi, what are you looking for?

CleanTechnica
<em>A Kansas State University engineer has made a breakthrough in rechargeable battery applications. The bottom image shows a self-standing molybdenum disulfide/graphene composite paper electrode and the top image highlights its layered structure. Image Credit: Gurpreet Singh</em>

Batteries

Sodium-Ion Batteries Receive Boost From Graphene Nanosheet Composite Paper

Sodium-ion batteries are now one step closer to being a reality, thanks to new research from Kansas State University. Researchers there have developed a new composite paper — utilizing graphene nano-sheets — that can be used as a negative electrode in sodium-ion batteries.

The “breakthrough,” as the researchers have referred to it, is based on the utilization of a material created from interleaved layers of molybdenum disulfide and graphene nanosheets — this research is the first to show that such a paper can function as both an active material to efficiently store sodium atoms and also as a flexible current collector.

A Kansas State University engineer has made a breakthrough in rechargeable battery applications. The bottom image shows a self-standing molybdenum disulfide/graphene composite paper electrode and the top image highlights its layered structure. Image Credit: Gurpreet Singh

A Kansas State University engineer has made a breakthrough in rechargeable battery applications. The bottom image shows a self-standing molybdenum disulfide/graphene composite paper electrode and the top image highlights its layered structure.
Image Credit: Gurpreet Singh


“Most negative electrodes for sodium-ion batteries use materials that undergo an ‘alloying’ reaction with sodium,” explained researcher Gurpreet Singh, an assistant professor of mechanical and nuclear engineering. “These materials can swell as much as 400% to 500% as the battery is charged and discharged, which may result in mechanical damage and loss of electrical contact with the current collector.”

“Molybdenum disulfide, the major constituent of the paper electrode, offers a new kind of chemistry with sodium ions, which is a combination of intercalation and a conversion-type reaction,” Singh continued. “The paper electrode offers stable charge capacity of 230 mAh.g-1, with respect to total electrode weight. Further, the interleaved and porous structure of the paper electrode offers smooth channels for sodium to diffuse in and out as the cell is charged and discharged quickly. This design also eliminates the polymeric binders and copper current collector foil used in a traditional battery electrode.”

Kansas State University provides more:

For the latest research, the engineers created a large-area composite paper that consisted of acid-treated layered molybdenum disulfide and chemically modified graphene in an interleaved structured. The research marks the first time that such a flexible paper electrode was used in a sodium-ion battery as an anode that operates at room temperature. Most commercial sodium-sulfur batteries operate close to 300 degrees Celsius, Singh said.

Singh said the research is important for two reasons:

1. Synthesis of large quantities of single or few-layer-thick 2-D materials is crucial to understanding the true commercial potential of materials such as transition metal dichalcogenides, or TMD, and graphene.

2. Fundamental understanding of how sodium is stored in a layered material through mechanisms other than the conventional intercalation and alloying reaction. In addition, using graphene as the flexible support and current collector is crucial for eliminating the copper foil and making lighter and bendable rechargeable batteries. In contrast to lithium, sodium supplies are essentially unlimited and the batteries are expected to be a lot cheaper.

“From the synthesis point of view, we have shown that certain transition metal dichalcogenides can be exfoliated in strong acids,” Singh stated. “This method should allow synthesis of gram quantities of few-layer-thick molybdenum disulfide sheets, which is very crucial for applications such as flexible batteries, supercapacitors, and polymer composites. For such applications, TMD flakes that are a few atoms thick are sufficient. Very high-quality single-layer flakes are not a necessity.”

The researchers are currently working on the commercialization of the technology, as well as continuing to explore lithium and sodium storage possibilities in other nanomaterials.

The new research is detailed in a paper just published in the journal ACS Nano.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

#1 most loved electric vehicle, solar energy, and battery news & analysis site in the world.

 

Support our work today!

Advertisement

Power CleanTechnica: $3/Month

Tesla News Solar News EV News Data Reports

Advertisement

EV Sales Charts, Graphs, & Stats

Advertisement

Our Electric Car Driver Report

30 Electric Car Benefits

Tesla Model 3 Video

Renewable Energy 101 In Depth

solar power facts

Tesla News

EV Reviews

Home Efficiency

You May Also Like

Batteries

The new CATL sodium battery that has several advantages over traditional lithium batteries.

Clean Power

The U.S. Department of Energy (DOE) joined universities and wind energy experts from across the country on Friday to announce the winners of the...

Batteries

An Australian company says it is testing an aluminum-ion battery that charges faster and stores more energy than any lithium-ion battery. But is that...

Clean Transport

Graphene is the nanomaterial of the next millennium and it could make the hydrogen fuel cell electric vehicle dream come true.

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.