Connect with us

Hi, what are you looking for?



Low-Cost, Corrosion-Free Water Splitter Created From Silicon And Nickel

A low-cost means of producing hydrogen fuel — one that doesn’t result in the corrosion of the materials used, and uses nothing but sunlight and water — has been created by researchers at Stanford University.

The new silicon-based water splitter — essentially just a silicon semiconductor coated in an ultrathin layer of nickel — brings the commercialization of large-scale hydrogen fuel one step closer to reality, according to the researchers involved.

This drawing shows two electrodes splitting water into oxygen (left) and hydrogen (right). The electrodes are connected via an external voltage source. The illuminated silicon electrode (left) is protected from the surrounding electrolyte by a 2-nm film of nickel and uses light energy to assist in the water-splitting process. Image Credit: Guosong Hong, Stanford University

“Solar cells only work when the sun is shining,” stated study co-author Hongjie Dai, a professor of chemistry at Stanford. “When there’s no sunlight, utilities often have to rely on electricity from conventional power plants that run on coal or natural gas.”

A better solution — according to Dai — would be to pair effective hydrogen-powered fuel cells with the solar cells.

Stanford University provides some background:

To produce clean hydrogen for fuel cells, scientists have turned to an emerging technology called water splitting. Two semiconducting electrodes are connected and placed in water. The electrodes absorb light and use the energy to split the water into its basic components, oxygen and hydrogen. The oxygen is released into the atmosphere, and the hydrogen is stored as fuel.

When energy is needed, the process is reversed. The stored hydrogen and atmospheric oxygen are combined in a fuel cell to generate electricity and pure water. The entire process is sustainable and emits no greenhouse gases. But finding a cheap way to split water has been a major challenge. Today, researchers continue searching for inexpensive materials that can be used to build water splitters efficient enough to be of practical use.

“Silicon, which is widely used in solar cells, would be an ideal, low-cost material,” stated Stanford graduate student Michael J Kenney, co-lead author of the new study. “But silicon degrades in contact with an electrolyte solution. In fact, a submerged electrode made of silicon corrodes as soon as the water-splitting reaction starts.”

To address this, the researchers have now turned to the process of coating silicon electrodes with ordinary nickel. “Nickel is corrosion-resistant,” Kenney explained. “It’s also an active oxygen-producing catalyst, and it’s earth-abundant. That makes it very attractive for this type of application.”

For the new research, a 2-nanometer-thick layer of nickel was applied onto a silicon electrode, and then partnered with another electrode and placed in a solution of water and potassium borate — light and electricity were then applied. After the application of light and electricity, the electrodes began splitting the water into oxygen and hydrogen — importantly, even after twenty-four hours the process was still continuing, with no noticeable signs of corrosion.

To further improve the process, the researchers then mixed lithium into the solution. “Remarkably, adding lithium imparted superior stability to the electrodes,” Kenney noted. “They generated hydrogen and oxygen continuously for 80 hours — more than three days — with no sign of surface corrosion.”

“Our lab has produced one of the longest lasting silicon-based photoanodes,” Dai stated. “The results suggest that an ultrathin nickel coating not only suppresses corrosion but also serves as an electrocatalyst to expedite the otherwise sluggish water-splitting reaction. Interestingly, a lithium addition to electrolytes has been used to make better nickel batteries since the Thomas Edison days. Many years later we are excited to find that it also helps to make better water-splitting devices.”

The researchers are now planning to follow this work up with efforts to further improve the stability and durability of the nickel-treated electrodes of silicon, in addition to improving the other materials used.

The new research was just published in the November 15th edition of the journal Science.

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.


You May Also Like


A polymer-based electrolyte made for batteries that keep working — and don’t catch fire — when heated to over 140 degrees F.

Cleantech News

Despite their supposed focus on sustainability, there seems to be an awful lot of fossil fuel and ‘big oil’ money creeping into university’s “green”...

Climate Change

Stanford University is the recipient of a $1.1 billion endowment to fund a sustainability and climate school. John and Ann Doerr have provided the...


The race is on to build the solar-powered Evs of the future, and it looks like graphene and TMDs could get the ball rolling.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.