Connect with us

Hi, what are you looking for?

CleanTechnica

Batteries

Carbyne — Strongest Material Yet Known, Possesses A Number Of Useful Properties, Research Finds

Carbyne — essentially a chain of carbon atoms held together by either double or alternating single and triple atomic bonds — will be the strongest material (tensile strength) in the world if anyone ever works out a means of producing it in bulk, new research from Rice University has found.

In addition to carbyne’s incredible strength, which is double that of graphene, the material possesses a wide-range of “remarkable” and useful qualities, according to the researchers — especially when formed into nanorods and nanoropes.

Rice University researchers have determined from first-principle calculations that carbyne would be the strongest material yet discovered. The carbon-atom chains would be difficult to make but would be twice as strong as two-dimensional graphene sheets. Image Credit: Vasilii Artyukhov/Rice University

Rice University researchers have determined from first-principle calculations that carbyne would be the strongest material yet discovered. The carbon-atom chains would be difficult to make but would be twice as strong as two-dimensional graphene sheets.
Image Credit: Vasilii Artyukhov/Rice University

Carbyne has actually been around for some time now — an approximation of it was first synthesized in the USSR in 1960. However, until this research, there really wasn’t that much known about it — though, it has been detected since then in interstellar dust and compressed graphite.

So, to address this lack of knowledge, Rice University theoretical physicist Boris Yakobson, along with his research group, set out to create a “portrait” of the material “with computer models using first-principle rules to determine the energetic interactions of atoms.”

Some of the key findings are detailed below:

  • Carbyne’s tensile strength — the ability to withstand stretching — surpasses “that of any other known material” and is double that of graphene. (For some perspective, it would take an elephant standing on a pencil to break through a single sheet of graphene.)
  • It has twice the tensile stiffness of graphene and carbon nanotubes and nearly three times that of diamond.
  • Stretching carbyne as little as 10% alters its electronic band gap significantly.
  • If outfitted with molecular handles at the ends, it can also be twisted to alter its band gap. With a 90-degree end-to-end rotation, it becomes a magnetic semiconductor.
  • Carbyne chains can take on side molecules that may make the chains suitable for energy storage.
  • The material is stable at room temperature, largely resisting crosslinks with nearby chains.
"Nanoropes or nanorods of carbyne, a chain of carbon atoms, would be stronger than graphene or even diamond if they can be manufactured, according to new calculations by Rice University. Theoretical physicist Boris Yakobson said the material might find uses in electronics and for energy storage." Image Credit: Vasilii Artyukhov/Rice University

“Nanoropes or nanorods of carbyne, a chain of carbon atoms, would be stronger than graphene or even diamond if they can be manufactured, according to new calculations by Rice University. Theoretical physicist Boris Yakobson said the material might find uses in electronics and for energy storage.”
Image Credit: Vasilii Artyukhov/Rice University

That’s a rather impressive and interesting array of characteristics, Yakobson explains: “You could look at it as an ultimately thin graphene ribbon, reduced to just one atom, or an ultimately thin nanotube. It could be useful for nanomechanical systems, in spintronic devices, as sensors, as strong and light materials for mechanical applications or for energy storage, etc.”

And, interestingly, carbyne may be the highest energy state possible for stable carbon: “People usually look for what is called the ‘ground state,’ the lowest possible energy configuration for atoms. For carbon, that would be graphite, followed by diamond, then nanotubes, then fullerenes. But nobody asks about the highest energy configuration. We think this may be it, a stable structure at the highest energy possible.”


In something that was a bit of a surprise to the researchers, it turns out that the band gap in carbyne is very sensitive to twisting. A welcome surprise though, as Artyukhov notes: “It will be useful as a sensor for torsion or magnetic fields, if you can find a way to attach it to something that will make it twist. We didn’t look for this, specifically; it came up as a side product.”

Another important finding was the discovery of “the energy barrier that keeps atoms on adjacent carbyne chains from collapsing into each other.” Artyukhov explains: “When you’re talking about theoretical material, you always need to be careful to see if it will react with itself. This has never really been investigated for carbyne.”

Previous research had indicated that carbyne wasn’t stable and would instead quickly transform into graphite and/or soot. That apparently isn’t the reality though, instead “carbon atoms on separate strings might overcome the barrier in one spot, but the rods’ stiffness would prevent them from coming together in a second location, at least at room temperature.”

“They would look like butterfly wings,” Artyukhov explains. Yakobson continues: “Bundles might stick to each other, but they wouldn’t collapse completely. That could make for a highly porous, random net that may be good for adsorption.”

The researchers are planning to continue investigating the material — specifically looking to develop a more in-depth understanding of its conductivity — but, they’re also looking to begin investigations into the one-dimensional forms of elements other than carbon. “We’ve talked about going through different elements in the periodic table to see if some of them can form one-dimensional chains,” Yakobson states.

The research was financially supported by both the Air Force Office of Scientific Research and the Welch Foundation. The National Science Foundation-supported DaVinCI supercomputer — administered by Rice’s Ken Kennedy Institute for Information Technology — performed the calculations for the research.

The new findings were just detailed in a paper published in the American Chemical Society journal ACS Nano.

 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

You May Also Like

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.