Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

Graphene Is The Strongest Material In The World Even When It Has Defects, Research Finds

Graphene is the strongest material in the world, even when it has notable defects, new research has found. Even when stitched together from numerous small crystalline grains, rather than being created directly in its perfect crystalline form, the material possesses its trademark and remarkable strength. This new research contradicts previous theoretical simulations which predicted that such defect-containing graphene would be much weaker than graphene in a perfect lattice.

Image Credit: Illustration by Andrew Shea for Columbia Engineering

Image Credit: Illustration by Andrew Shea for Columbia Engineering

It’s been said that graphene is so strong that “it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap.” The impressive strength of the material, as well as its many other remarkable qualities — the ability to convert a single photon of light into multiple electrons, the absorption of a very large spectrum of light, unique optical properties, etc — make it a very appealing and potentially revolutionary material.

Graphene is — essentially — just a single atomic layer of carbon that is structured as a honeycomb lattice. “Our first Science paper, in 2008, studied the strength graphene can achieve if it has no defects — its intrinsic strength,” says James Hone, professor of mechanical engineering at Columbia Engineering, who led the study with Jeffrey Kysar, professor of mechanical engineering. “But defect-free, pristine graphene exists only in very small areas. Large-area sheets required for applications must contain many small grains connected at grain boundaries, and it was unclear how strong those grain boundaries were. This, our second Science paper, reports on the strength of large-area graphene films grown using chemical vapor deposition (CVD), and we’re excited to say that graphene is back and stronger than ever.”


The new research corrects the mistaken belief that defects present in graphene are the cause of the extremely low strength seen in some previous studies — the lowered strength is actually the result of the methods used for post-processing CVD-grown graphene. The Columbia Engineering research team has remedied this by developing a new process which prevents damage from being done to the graphene during transfer.

“We substituted a different etchant and were able to create test samples without harming the graphene,” states the paper’s lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab. “Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications.”

The primary way that graphene is currently manufactured is via chemical vapor deposition (CVD). Sheets of graphene as large as television screens can be grown this way. And the method has the advantage of being much-more economical than alternatives.

“But CVD graphene is ‘stitched’ together from many small crystalline grains — like a quilt — at grain boundaries that contain defects in the atomic structure,” Kysar explains. “These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be.”

So the researchers set out to find what was making CVD graphene weaker than the graphene made with other manufacturing methods. What they found was that a specific chemical used in the process was damaging the graphene, diminishing its strength.

“This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size,” says Hone. “This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials.”

Possible uses include: next-generation solar cells, ultra-flexible electronics, television screens that roll up like posters, extremely strong composite materials that could eclipse the strength of carbon fiber, and possibly even the creation of a space elevator.

The new research was recently published in the journal Science.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

#1 most loved electric vehicle, solar energy, and battery news & analysis site in the world.

 

Support our work today!

Advertisement

Power CleanTechnica: $3/Month

Tesla News Solar News EV News Data Reports

Advertisement

EV Sales Charts, Graphs, & Stats

Advertisement

Our Electric Car Driver Report

30 Electric Car Benefits

Tesla Model 3 Video

Renewable Energy 101 In Depth

solar power facts

Tesla News

EV Reviews

Home Efficiency

You May Also Like

Batteries

An Australian company says it is testing an aluminum-ion battery that charges faster and stores more energy than any lithium-ion battery. But is that...

Clean Transport

Graphene is the nanomaterial of the next millennium and it could make the hydrogen fuel cell electric vehicle dream come true.

Clean Power

The killer solar cell combo of perovskite and graphene is about to shake off the laboratory dust and venture out into the field.

Clean Power

Researchers at MIT have created a thermal resonator, a device that can harvest electricity from changes in temperature. While early prototypes only generate a...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.