Connect with us

Hi, what are you looking for?

CleanTechnica

Research

Graphene Gets A New Superpower: Magnetism

Graphene is a carbon material only one atom thick, but its superhero scale strength and other unique behaviors are beginning to make it look like its own mini-Justice League (or Avengers, for you Marvel fans). In the latest development, a research team in Spain has coaxed yet another property out of graphene in the form of magnetic power. The magnetic graphene breakthrough could lead to super fast, super efficient electronic devices based on spintronics, in which the magnetic properties of a material as well as its electrical charge are manipulated.

scientists add magnetic power to graphene.

Magnetized graphene courtesy of IMDEA.

How To Make Magnetic Graphene

The carbon atoms in graphene are arranged in a distinctive lattice pattern that looks like chicken wire. The first pioneers of graphene research obtained samples literally by lifting a layer of carbon atoms from a chunk of graphite with sticky tape, but natural graphene obtained in this way can be finicky and inconsistent. Since then researchers have developed a variety of ways to fabricate graphene film to achieve a state closer to perfection.

The magnetic graphene development comes from researchers at IMDEA-Nanosciencia Institute, and Autonoma and Complutense Universities of Madrid. The team created their graphene film by “growing” it on a ruthenium single crystal in a vacuum chamber (ruthenium is a transition metal belonging to the platinum group).

The magnetic effect appeared when the team evaporated molecules of tetracyano-p-quinodimethane (TCNQ) onto the graphene. TCNQ belongs to the cyanocarbon group of organic compounds. Under certain conditions, it acts as a semiconductor.

To confirm the effect, the team used a scanning tunneling microscope, which produces atomic-level images. It revealed that the organic molecules in TCNQ had self-organized into a regular distribution over the surface characteristic of magnetic order. Modeling studies conducted by another member of the team confirmed that the graphene enabled this behavior.

What’s The Big Deal About Magnetic Graphene?

If and when graphene can be produced for the mass market, you’ll see it replace silicon as the semiconductor of choice, leading to a whole new generation of faster, smaller, cheaper, lighter, and more energy efficient electronic devices.

Now add spintronics to the mix, and you’ve got a recipe for a quantum leap in computing power.

The difference is that conventional electronics are based only on the electrical charge of electrons in a semiconductor material, so they behave in only two states.

Electrons also have magnetic properties, aka “spin,” which adds two more states to the equation. As explained by Professor John Xiao of the University of Delaware:

“…in the presence of a magnet, an electron will take a ‘spin up’ or ‘spin down’ position, correlating to the binary states of 1 or 0 that computers use to encode and process data. One spin state aligns with the magnetic field, and one opposes it.”

The sticky wicket is getting to a place where the direction of the magnetization can be controlled, and the Delaware team has taken a step toward that with newly announced confirmation of the presence of a magnetic field generated by electrons.

Graphene In A League Of Its Own

When we say graphene is like a mini-Justice League of its own, we’re not kidding. The material was discovered barely ten years ago, in 2004, and already it has spawned thousands of research papers describing a growing array of talents.

Among some of the highlights, graphene could enable a new generation of high efficiency desalination systems based on chemical reactions rather than water pressure, which would be quite handy given the growing issue of global fresh water scarcity.

As a high-efficiency converter of light to electricity, graphene could also appear in advanced solar cells some time in the future (one research team is already working on ultra-thin flexible solar cells based on a “sandwich” structure that includes sheets of graphene).


The field of telecommunications offers another possibility, as researchers are discovering that graphene can act as a highly efficient optical amplifier.

Follow me on Twitter

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Electrifying Industrial Heat for Steel, Cement, & More


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

Comments

You May Also Like

Cars

One nagging concern U.S. consumers have about electric vehicles (EVs) is the ability of these battery-operated cars and trucks to get you where you...

Batteries

Electric vehicle news keeps flowing at a rapid pace (just like electric car sales). Below are dozens of stories we didn’t write about but...

Batteries

Tiny Luxembourg aims to dominate the graphene nanotube market for next-generation EV batteries and other sustainable tech.

Clean Power

USA seeks to catapult self into vanguard of ocean energy R&D with PacWave South, a first-of-its-kind wave power test site off the coast of...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.

Advertisement