Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

Solar Cell Made of a Single Molecule: Electrical Current Generated from Individual Protein Complex

 
A method to measure the photocurrents of a ‘single functionalized photosynthetic protein system’ has now been developed by researchers. The researchers are confident that they can show that such a system could be integrated and “selectively addressed” inside of an artificial photovoltaic device’s architecture while still being able to retain its “biomolecular functional properties.”

solar cell solar

Photosystem-I (green) is optically excited by an electrode (on top). An electron then is transferred step by step in only 16 nanoseconds.

The protein is essentially a light-driven and highly efficient single-molecule electron pump, a pump that can potentially act as a power generator in nanoscale electric circuits.

The researchers were investigating the photosystem-I reaction center — that’s a chlorophyll protein complex that is located in the membranes of chloroplasts from cyanobacteria. Photosynthesis is used by algae, plants, and some bacteria in order to convert the Sun’s energy into usable and storable chemical energy. “The initial stages of this process — where light is absorbed and energy and electrons are transferred — are mediated by photosynthetic proteins composed of chlorophyll and carotenoid complexes.”

Until this breakthrough, there weren’t any methods that were sensitive enough to measure the photocurrents that are generated by a single protein. “Photosystem-I exhibits outstanding optoelectronic properties found only in photosynthetic systems. The nanoscale dimension further makes the photosystem-I a promising unit for applications in molecular optoelectronics.”


 
The primary challenge to the physicists was that they had to develop and master “a method to electrically contact single molecules in strong optical fields. The central element of the realized nanodevice are photosynthetic proteins self-assembled and covalently bound to a gold electrode via cysteine mutation groups,” a Technische Universitaet Muenchen news release states. ”

The photocurrent was measured by means of a gold-covered glass tip employed in a scanning near-field optical microscopy set-up. The photosynthetic proteins are optically excited by a photon flux guided through the tetrahedral tip that at the same time provides the electrical contact.” Using this technique allowed the researchers to monitor the photocurrent being generated in single protein units.

The research team is publishing the results of the research in the journal Nature Nanotechnology this week.

The research was the result of interdisciplinary cooperation between researchers, led by Joachim Reichert, Johannes Barth, and Alexander Holleitner (Technische Universitaet Muenchen, Clusters of Excellence MAP, and NIM), and Itai Carmeli (Tel Aviv University)

Source: Technische Universitaet Muenchen
Image Credits: Christoph Hohmann (NIM)

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Electrifying Industrial Heat for Steel, Cement, & More


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

You May Also Like

Buildings

The US Department of Energy Solar Decathlon 2015 team Texas/Germany — the University of Texas at Austin and Technische Universitaet Muenchen in Germany — has...

Clean Power

Environment America Research and Policy Center recently released Lighting the Way, a fascinating hard numbers–based take on the US solar energy boom, the top states that...

Biomass

The world added nearly a million green jobs in 2013, extending into developing countries on solar's surge, says the International Renewable Energy Agency.

Buildings

Originally published on 1Sun4All. The Bullitt Center in Seattle, Washington is the greenest commercial building in the world, it is Net Zero, and was recently named the World Architecture News Sustainable...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.

Advertisement