Connect with us

Hi, what are you looking for?

CleanTechnica

Health

Biocompatible Material Much Tougher than Cartilage Developed, May be able to Replace Damaged Cartilage in Joints

 
Experts from a wide variety of fields have collaborated to research and create an extremely tough and stretchy biocompatible material that may be used in the future to replace damaged cartilage in human joints.
20120906-232706.jpg

The material is a hydrogel, which means that its main component is water and that it is a hybrid of two weak gels combined to create a material much stronger than either was on its own.

This newly created gel is able to stretch to 21 times its original length, and is, more impressively, also extremely tough, biocompatible, and capable of self-healing. That’s an extremely valuable collection of attributes when taken together, opening up many new possibilities and opportunities in medical and tissue engineering fields.

The research on the new material, its properties, and an easy way to synthesize it are described in the September 6 issue of Nature.


 
“Conventional hydrogels are very weak and brittle — imagine a spoon breaking through jelly,” explains lead author Jeong-Yun Sun, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS). “But because they are water-based and biocompatible, people would like to use them for some very challenging applications like artificial cartilage or spinal disks. For a gel to work in those settings, it has to be able to stretch and expand under compression and tension without breaking.”

The very tough new hydrogel was created by combining two common polymers, the primary being polyacrylamide (used in soft contact lenses), and the secondary being alginate (a seaweed extract used to thicken food).

“Separately, these gels are both quite weak — alginate, for instance, can stretch to only 1.2 times its length before it breaks. Combined in an 8:1 ratio, however, the two polymers form a complex network of crosslinked chains that reinforce one another. The chemical structure of this network allows the molecules to pull apart very slightly over a large area instead of allowing the gel to crack.”

The portion of the gel that is alginate is made of polymer chains that make weak ionic bonds with one another, “capturing calcium ions (added to the water) in the process.” If the gel is stretched out it allows some of these bonds between the chains to break, releasing the calcium. When this happens the gel slightly expands, while still leaving the polymer chains themselves intact. At the same time as this, the polyacrylamide chains form into a “grid-like structure that bonds covalently (very tightly) with the alginate chains.”

20120906-232717.jpg
So, if the gel forms even a tiny crack as it’s stretched, the polyacrylamide grid spreads out over a large area the force from the pulling, putting pressure on the alginate’s ionic bonds and breaking them in some spots. Even with a huge crack, the hybrid gel is still able to stretch to 17 times its beginning length.

An important thing to note is that the new hydrogel is able to maintain its toughness and elasticity even after being stretched many times. As long as some time is provided to relax in between the stretches, the ionic bonds between the alginate and the calcium can “un-break.” In experiments, it was demonstrated that this healing process can be intentionally accelerated by increasing the ambient temperature.

“The unusually high stretchability and toughness of this gel, along with recovery, are exciting,” says Suo. “Now that we’ve demonstrated that this is possible, we can use it as a model system for studying the mechanics of hydrogels further, and explore various applications.”

Beyond artificial cartilage, the researchers suggest that the new hydrogel could be used in soft robotics, optics, artificial muscle, as a tough protective covering for wounds, or “any other place where we need hydrogels of high stretchability and high toughness.” Perhaps in some new cleantech?

Source: Harvard School of Engineering and Applied Sciences
Image Credit: Jeong-Yun Sun and Widusha R. K. Illeperuma

 
Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
 

Advertisement
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

Comments

You May Also Like

Buildings

Proposal will reduce, but not fully eliminate, fossil fuel pollution from new buildings throughout the state

Air Quality

The latest research shows nearly 9 million people die every year as the result of breathing fine particulate matter from burning fossil fuels.

Air Quality

An email in my inbox today proclaimed, “it’s September and we’re heading into pollution season in many regions.” I was taken aback. Does pollution...

Climate Change

Researchers at Harvard plan a geoengineering experiment injecting calcium carbonate dust high over the Southwestern US to see if it can help lower the...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.