Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

New Technologies Will Cut Cost of PV Metallization by up to 50%

 
Metallization of solar cells is a process by which metal electrodes are laid down on a non-metallic object to collect the electricity generated by the sunlight. But it is a costly process, due in large part to the soaring cost of the silver that is normally used. However, according to a new report by Lux Research, emerging technologies, like copper metallization, nickel phosphude, and non-contact printing techniques, are likely to reduce the costs of metallization.

Innovation in the field has the potential to bring costs down by up to 50 percent and improve the yields for the three major technology categories — crystalline silicon (x-Si), copper indium gallium (di)selenide (CIGS), and cadmium telluride (CdTe).

“Tomorrow’s PV winners will be those companies that can reduce their production costs in $/W and maintain sustainable profit margins. Metallization is a key materials-driven driver for higher efficiencies, reduced production costs and improved yields,” said Fatima Toor, Lux Research Analyst and the lead author of the report, “Key Issues and Innovations in Photovoltaic Metallization.”

Lux Research analysts studied emerging innovations in metallization to determine their impact on solar cell production. Among their findings:

  • Drive to reduce silver use is inevitable. Over the past decade, silver prices have risen six-fold to about $30/ounce, necessitating lower usage and other work-arounds. Applied Materials’ double-printing tool reduces silver usage by 30% relative to conventional screen printing and improves absolute cell efficiencies by 0.3% to 0.5%, offering the nearest term bang for the buck. But the technology roadmap won’t stop there.
  • Copper pastes are the logical metallization winner. Copper is the leading contender to displace silver, given its abundance and established use in the semiconductor electronics industry. But copper pastes need further development because they lag in cell performance and long-term durability; Napra and Japan’s National Institute of Advanced Industrial Science and Technology (AIST) are blazing the trail but others will enter to open a path to practical copper metallization for both x-Si and CIGS PV.
  • Nickel phosphide (Ni2P) will be the widely adopted back contact for CdTe metallization. Ni2P has shown durability, anneals at high temperature and does not require expensive materials. It can slightly trim costs and significantly improve yields.

Source: Lux Research (PDF)
Image Source: Mike Baker Photography

 

 

 
 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement
 
Written By

I'm a Christian, a nerd, a geek, and I believe that we're pretty quickly directing planet-Earth into hell in a handbasket! I also write for Fantasy Book Review (.co.uk), and can be found writing articles for a variety of other sites. Check me out at about.me for more.

Comments

You May Also Like

Clean Power

Innovation interest in renewable energy tech has been declining in recent years, achieving a peak around 4 years ago, according to a recent analysis...

Clean Power

If you already understand how much of a danger Trump is to cleantech and the future livability of our planet, sign this petition, and...

Batteries

It makes more sense from an economic standpoint to recycle old plug-in electric vehicle batteries than to reuse them directly for home energy storage,...

Market Research

Increases in distributed generation have resulted in challenges to the power sector’s traditional way of doing things, and could result in further disruption, according...

Copyright © 2021 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.