Connect with us

Hi, what are you looking for?

CleanTechnica

Clean Power

New Hydrogen Catalyst Takes off Like a Rocket

 
new hydrogen catalyst takes off like a rocket

The next generation of low-cost fuel cells could take your home off the grid and free your car from the gas pump with clean, renewable energy, and researchers at Pacific Northwest National Laboratory have brought us one step closer to that future. The team has deployed a biomimicry-based hydrogen production process that combines high speed with high energy efficiency, thanks to a catalyst that “lights up like a rocket.”

An obstacle for low-cost fuel cells

Hydrogen is the most abundant material on the planet, but hydrogen fuel cells are relatively expensive in part because separating hydrogen from water molecules typically involves the use of a pricey platinum catalyst, and partly because it can be an energy-hungry process.

So far, researchers have found ways to make cheaper nickel-based catalysts work more quickly, or use less energy, but not both at the same time.

 

 

A fast, efficient hydrogen catalyst from biomimicry

To achieve a catalytic twofer, the PNNL team used a type of natural protein called a hydrogenase as their model. A hydrogenase is an enzyme that plays a role in anaerobic (oxygen-free) digestion. Its key role is to create an energy-storing chemical bond between two hydrogen atoms.

In its initial form, the team’s “imitation” hydrogenase catalyst could produce hydrogen molecules at a snail’s pace of about 1,000 per second.

It could also produce at the rate of 100,000 per second, but only under energy-intensive conditions.

The breakthrough came when the team dissolved the catalyst in a solution of salts called an ionic liquid. When they slowly added water to the mix, the catalyst began to light up “like a rocket” according to PNNL chemist John Roberts.

At its best rate, the catalyst cranked out 53,000 molecules of hydrogen per second without a loss of energy efficiency.

Next steps for biomimicry fuel cells

In addition to achieving a better ratio of speed to efficiency, the PNNL team also came away with a better understanding of how the catalyst interacts with its ionic bath. The team plans to develop those clues into further improvements.

For now, the team will continue to study the catalyst in its dissolvable form, but for real-world applications they will eventually need to bind it to a fixed surface.

Image: Some rights reserved by stevendepolo
Follow me on Twitter: @TinaMCasey
 
I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
 

Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.

Comments

You May Also Like

Climate Change

Restoring forests marks one of six approaches PNNL researchers are exploring as they seek to understand which carbon dioxide removal methods can limit global...

Batteries

Plastic and molten salt batteries may be the key to grid-scale energy storage.

Clean Power

The Intertubes are practically on fire with news that the Biden administration is putting up $3 billion in funding for a new offshore wind...

Batteries

Silicon is the silent killer of graphite behind a new generation of fast-charging, long range, low cost EV batteries.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.

Advertisement