Connect with us

Hi, what are you looking for?

CleanTechnica
A team of researchers at the University of California, Merced (UC Merced), has found a way to redesign luminescent solar concentrators in order to make them "more efficient at sending sunlight to solar cells." This could have a pretty big impact on future solar technologies....

Clean Power

Luminescent Solar Concentrator Efficiency Improvement from UC-Merced Researchers

A team of researchers at the University of California, Merced (UC Merced), has found a way to redesign luminescent solar concentrators in order to make them “more efficient at sending sunlight to solar cells.” This could have a pretty big impact on future solar technologies….

First of all, if you want an intro on luminescent solar concentrators (as I did), check out that Wikipedia page linked above.

Now, the important news is that a team of researchers at the University of California, Merced (UC Merced), has found a way to redesign luminescent solar concentrators in order to make them “more efficient at sending sunlight to solar cells.”

"UC Merced researchers discovered that hollow cylindrical luminescent solar concentrators, bottom, are more efficient than traditional flat panel concentrators."

“We tweaked the traditional flat design for luminescent solar concentrators and made them into cylinders,” UC Merced physics professor Sayantani Ghosh, the lead researcher, said. “The results of this architectural redesign surprised us, as it significantly improves their efficiency.”

Luminescent Solar Concentrators’ Limitations

From the UC Merced news release: “The main problem preventing luminescent concentrators from being used commercially is that they have high rates of self-absorption, Ghosh said, meaning they absorb a significant amount of the light they produce instead of transporting it to the solar cells.”

That explains why most of us probably hadn’t heard about this technology until now.

Improving Efficiency with Hollow Cylindrical Design

But, as Ghosh noted above and UC Merced presents more specifically, the team found that “hollow cylinders absorb more sunlight while having lower self-absorption losses.”

Luminescent Solar Concentrator Advantages

As noted in the Wikipedia introduction on luminescent solar concentrators above, the main advantage of this solar technology is that it works better than traditional cells in diffuse sunlight, meaning that 1) these concentrators work better on cloudy days, and 2) they don’t need to face the sun directly and, thus, don’t require sun-tracking mechanisms.

Could These Be Commercially Viable?…

According to Ghosh, this discovery could make luminescent solar concentrators commercially viable. The new design improves performance without increasing the number of quantom dots needed, so the cost isn’t going to change much, if at all.

“This saves on infrastructure costs and also opens up the possibility that the collectors can be integrated onto vertical surfaces like walls and windows,” UC Merced writes. “The next step is to develop a large array of hollow cylindrical luminescent solar concentrators and track the efficiency of the panel.”

What Are Quantum Dots?

If you skipped the Wikipedia intro above, quantum dots are embedded in the concentrators and allow them to “absorb solar radiation over a broad range of colors and re-emit it over a narrower range,” UC Merced summarizes.

We’ve written on the use of quantum dots in solar, and how they could potentially boost solar efficiency 100% a handful of times in recent years. Definitely something to keep an eye on.

More on UC Merced’s Research

Other members of the research team included Richard Inman, Georgiy Shcherbatyuk, Dmitri Medvedko, and Ajay Gopinathan.

A paper on the work, “Cylindrical luminescent solar concentrators with near-infrared quantum dots,” has been published in the journal Optics Express.

 
 
 
Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.
 

Don't want to miss a cleantech story? Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Advertisement
 
Written By

Zach is tryin' to help society help itself one word at a time. He spends most of his time here on CleanTechnica as its director, chief editor, and CEO. Zach is recognized globally as an electric vehicle, solar energy, and energy storage expert. He has presented about cleantech at conferences in India, the UAE, Ukraine, Poland, Germany, the Netherlands, the USA, Canada, and Curaçao. Zach has long-term investments in Tesla [TSLA], NIO [NIO], Xpeng [XPEV], Ford [F], ChargePoint [CHPT], Amazon [AMZN], Piedmont Lithium [PLL], Lithium Americas [LAC], Albemarle Corporation [ALB], Nouveau Monde Graphite [NMGRF], Talon Metals [TLOFF], Arclight Clean Transition Corp [ACTC], and Starbucks [SBUX]. But he does not offer (explicitly or implicitly) investment advice of any sort.

Comments

You May Also Like

Health

For a short time, I got uplifted and excited about a study coming out of Los Angeles County and one coming out of Santa...

Clean Power

Three new research breakthroughs are bring the advent of "electricity too cheap to meter" closer and closer.

Clean Power

Another group hug for US taxpayers: new perovskite solar cell made from quantum dots by Energy Department's NREL research team.

Clean Power

Following the entries of 56 different teams and companies to the SunRISE TechBridge Challenge, the judges have chosen 5 early-stage companies as winners after...

Copyright © 2022 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.