Connect with us

Hi, what are you looking for?

CleanTechnica
Fresh out of having its dot-sized, triple junction solar PV cells validated at 41% efficiency, Semprius is building a 35 MW production facility in North Carolina. Using a massive parallel micro-transfer process, its concentrated PV modules are expected to be competitive with fossil fuels. Siemens and VC partners have taken an equity stake in the start-up, a dramatic illustration of how federal government support is being leveraged by private industry.

Clean Power

Semprius to Produce Dot-Sized, Low Cost-High Efficiency Solar CPV Cells, Modules at NC Plant

Fresh out of having its dot-sized, triple junction solar PV cells validated at 41% efficiency, Semprius is building a 35 MW production facility in North Carolina. Using a massive parallel micro-transfer process, its concentrated PV modules are expected to be competitive with fossil fuels. Siemens and VC partners have taken an equity stake in the start-up, a dramatic illustration of how federal government support is being leveraged by private industry.

Photo credit: Dennis Schroeder, NREL, Semprius

Tiny solar cells developed by Durham, NC-based Semprius were validated by the US Dept. of Energy’s (DOE) National Renewable Energy Lab (NREL) as achieving an energy conversion efficiency of greater than 41% at a concentration of 1,000 suns. That’s one of the highest efficiencies ever recorded at this level of concentrated sunlight, NREL announced Dec. 14.

With seed funding from the DOE and the help of experts at the NREL-based SunShot Incubator Program, Semprius now aims to manufacture and commercialize its technology utilizing its patented micro-transfer printing process, a low cost, massive parallel process that simultaneously transfers thousands of the preformed circuit elements from a source semiconductor to almost any other substrate.

Construction of Semprius’s manufacturing plant in Henderson, NC began earlier this year. North Carolina and local agencies contributed $7.9 million for the 50,000-square foot plant, which is expected to employ 256 people at full build-out. The plant’s due to be commissioned in 2012 with an initial capacity of 5 megawatts (MW), expanding to 35 MW over time.

Tiny CPV Cells Competitive with Fossil Fuels

The market for highly-concentrated solar photovoltaics (CPV) is expected to at least double every year over the next nine years, reaching greater than 10 gigawatts (GWs) of power by 2020, according to Semprius CEO Joe Carr. The modules produced at the Henderson plant will be 24 inches by 18 inches, and about 2-1/2 inches deep, have a concentration of more than 1,100 suns and an efficiency of more than 31%. It’s believed that Semprius’s CPV modules would be cost competitive with fossil fuel technology at high volume.

About the diameter of a dot made by a ballpoint pen, Semprius’s solar photovoltaic (PV) cells are triple junction cells made of gallium arsenide. Low cost lenses concentrate sunlight 1,100-times onto the cells. Their tiny size reduces module cost as they take up only 1/1000th of the entire solar module area. It also enables a high density of cells per module, which better distributes unwanted heat across the entire solar module solar area. That eliminates the need for heat dissipation hardware, such as heat fins, further reducing production costs.

Semprius’s patented micro-transfer printing process allows thousands of its concentrated solar PV cells (CPV) to be transferred from a growth substrate to a semiconductor wafer or other form factor. It’s a continuous, massive parallel process that runs continuously and allows the growth substrate to be used repeatedly, which cuts costs dramatically, according to NREL and Semprius.

The process was originally developed by University of Illinois Professor John Rogers and his R&D team, which they initially envisaged being used to manufacture flexible electronics. Rogers then realized that applying the technology to CPV design could be much more lucrative, NREL recounted.

“We’re using a completely different approach to what has been practiced,” said Kanchan Ghosal, CPV Applications Engineering Manager and the principal investigator for Semprius’ PV Incubator Award. “This approach uses micro-cells and transfer printing to significantly reduce the use of materials in highly concentrated PV modules. And it provides a highly parallel method to manufacture the module, based on established microelectronics processes and equipment.”

Semprius claims its low-cost manufacturing approach by 50%. Progress to data has been enough to grab the attention of multinational power industry giant Siemens, which took a 16% equity stake in the company as part of a $20 million investment from venture capitalists.

The venture capital investment further illustrates how federal government investment, scientific and technological research, development and support is being leverage by private sector companies. The DOE has invested $50 million in 35 solar start-ups participating in the SunShot Incubator Program. Private investment in these companies now totals more than $1.3 billion, a 25:1 multiple.

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 
Written By

I've been reporting and writing on a wide range of topics at the nexus of economics, technology, ecology/environment and society for some five years now. Whether in Asia-Pacific, Europe, the Americas, Africa or the Middle East, issues related to these broad topical areas pose tremendous opportunities, as well as challenges, and define the quality of our lives, as well as our relationship to the natural environment.

Comments

You May Also Like

Clean Power

The U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) and Sandia National Laboratories, co-leads of the Heliostat Consortium, announced seven awardees from...

Clean Power

The long wait for low-cost, high-performance perovskite solar cells is coming to a close. Now the fun begins.

Clean Transport

This spring, the U.S. Department of Energy announced $7 million in funding for seven projects focused on creating regional infrastructure plans to support electric...

Clean Transport

The revolutions in power generation and vehicle technology are gaining momentum, and given the climate crisis, they can’t come too soon. Last year, renewables...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.