Connect with us

Hi, what are you looking for?

CleanTechnica
Stanford university researchers have demonstrated a battery that can survive 40,000 cycles, compared to the 1,000 that lithium-ion batteries can.

Energy Storage

40,000 Cycles — Nanotechnology Catapults Battery Technology Forward, Once Again

Stanford university researchers have demonstrated a battery that can survive 40,000 cycles, compared to the 1,000 that lithium-ion batteries can.

Zinc-Air Batteries

Yi Cui, a Stanford University professor of materials science and engineering, has led researchers to yet another breakthrough in battery technology, but this time, it is not lithium-ion.

For those that don’t already know, electric vehicles need batteries with a low cost and a long lifespan, and solar and wind power plants can benefit significantly from batteries like that as well. Storing solar and wind power for later use not only facilitates selling it at any time of day with no backup generators, but it eliminates reliability issues and fluctuations in electricity generation.

Stanford University researchers have demonstrated a battery technology that is able to retain 83% of it’s charge after 40,000 cycles. (1 cycle is 1 charge and 1 discharge.) Lead acid batteries only last a few hundred cycles, and lithium-ion 1,000.

Please note that the cycle life of batteries is not the same as their shelf life. Some batteries, such as li-ion self-degrade even when not being used. Lithium-ion batteries would last 19 years if they did not self-degrade, due to the fact that they have a cycle life of 1,000 cycles, assuming that they are cycled once per week.

This new battery technology is similar to lithium-ion batteries but can use either sodium or potassium ions instead of lithium ions. Sodium and potassium are much more abundant and cheaper than lithium.

What the researchers did was start with a pigment called “Prussian Blue,” which is a compound of iron and cyanide, and they replaced half of the iron with copper, then they manufactured crystalline nanoparticles of the compound. Then they coated it on a cloth resembling carbon substrate. Then, finally, they submerge it in an electrolyte solution called potassium nitrate.

The electrodes exhibited 99% efficiency. “You want the voltage you put in during charging and the voltage you take out during discharge to be same,” Cui says. “Compared to any other battery material, this is absolutely the best.”

This does have a drawback for weight-sensitive applications such as electric vehicles, though: this has an energy density of only 60 mAh per gram. Apart from that, this is definitely a technology I want to keep an eye on. Power plants are not weight-sensitive.

Related Articles:

  1. Apple Demonstrates Energy-Efficient MacBook Battery at MacWorld
  2. Ordinary Pencil Offers Solution for Elusive Lithium-Air Battery
  3. Eos Rechargable Zinc-Air Battery: Energy Storage “El Dorado?”

h/t Technology Review | photo via Voxphoto

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 
Written By

writes on CleanTechnica, Gas2, Kleef&Co, and Green Building Elements. He has a keen interest in physics-intensive topics such as electricity generation, refrigeration and air conditioning technology, energy storage, and geography. His website is: Kompulsa.com.

Comments

You May Also Like

Clean Power

Power outages are becoming an increasingly common occurrence in modern American society. Millions of homeowners lose power each year, with a 64% rise in...

Batteries

Not "the Gap", but a community that's located 10 km northwest of Brisbane in the gap between the hills of the Taylor Range.

Batteries

“Hawaii is a postcard from the future,” says Adam Browning, executive director of Vote Solar, a policy and advocacy group based in California. Driven by...

Batteries

Originally published on Solar Love. Trina Solar, the world’s largest solar panel manufacturer, will begin selling residential storage batteries in Australia in June of this...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.