Connect with us

Hi, what are you looking for?

CleanTechnica
A team of researchers at Michigan State University has solved the mystery of how Geobacter bacteria found in soils manage to clean up nuclear waste and generate electricity at the same time. Going a step further, the team genetically engineered a Geobacter strain that does an even better job of it.

Nuclear Energy

MSU Researchers Discover How Bacteria Can Clean Up Nuclear Waste & Generate Electricity

A team of researchers at Michigan State University has solved the mystery of how Geobacter bacteria found in soils manage to clean up nuclear waste and generate electricity at the same time. Going a step further, the team genetically engineered a Geobacter strain that does an even better job of it.

Photo Credit: Michigan State University

A team of researchers at Michigan State University has solved the mystery of how Geobacter bacteria found in soils manage to clean up nuclear waste and generate electricity at the same time. Going a step further, the team genetically engineered a Geobacter strain that does an even better job of it.

MSU microbiologist Gemma Reguera has filed patents to build on her research, “which could lead to the development of microbial fuel cells capable of generating electricity while cleaning up environmental disasters,” according to an MSU news release.

“Geobacter bacteria are tiny micro-organisms that can play a major role in cleaning up polluted sites around the world,” said Reguera, an MSU AgBioResearch scientist. “Uranium contamination can be produced at any step in the production of nuclear fuel, and this process safely prevents its mobility and the hazard for exposure.”

The ability of Geobacter to clean up and neutralize uranium was proven when they were recruited to clean-up uranium mill tailings at a site in Rifle, Colorado. Researchers stimulated reproduction and activity of Geobacter already in the soil by injecting acetate, which they feed on, into contaminated groundwater. This gave the microbes energy sufficient for them to remove the uranium.

Exactly how Geobacter accomplished this feat wasn’t known until Reguera and her team made their discovery. It turns out conductive, hair-like appendages, called pilli or nanowires, are doing most of the work and managing electrical activity as the Geobacter bacteria essentially electroplate uranium, thereby neutralizing it and preventing it from leaching into groundwater. Their nanowires also protect the Geobacter, enabling them to live in a toxic environment.

Reguera and her team then went on to genetically engineer a Geobacter strain that enhanced the cells’ nanowire production. “The modified version improved the efficiency of the bacteria’s ability to immobilize uranium proportionally to the number of nanowires while subsequently improving its viability as a catalytic cell,” according to MSU’s news release.

 

 
Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!
 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Former Tesla Battery Expert Leading Lyten Into New Lithium-Sulfur Battery Era — Podcast:



I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Advertisement
 
Written By

I've been reporting and writing on a wide range of topics at the nexus of economics, technology, ecology/environment and society for some five years now. Whether in Asia-Pacific, Europe, the Americas, Africa or the Middle East, issues related to these broad topical areas pose tremendous opportunities, as well as challenges, and define the quality of our lives, as well as our relationship to the natural environment.

Comments

You May Also Like

Clean Transport

BMW continues down the road the path of fuel cell powered passenger cars as part of its corporate strategy for the future.

Cars

Honda (and GM) to fuel cell electric car fans: never give up, never surrender.

Aviation

The US firm ZeroAvia is one step closer to bringing its zero emission electric aircraft to market, powered by hydrogen fuel cells.

Clean Transport

Cummins and Alstom have joined forces to launch the world's first 100% hydrogen fuel cell train route for passengers in Germany.

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.