Finally! A Low Cost Solar Panel that Can See in the Dark

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

 
researchers at Lawrence  Berkeley Lab develop full light spectrum solar cellWell…it can almost see in the dark. Scientists at the Lawrence Berkeley National Laboratory have just announced that they’ve been able to confirm a new high-efficiency solar cell design that handles pretty much the entire solar spectrum. To ice the solar cake, the new technology can be manufactured using ordinary low-cost processes that are currently in use.

Chip in a few dollars a month to help support independent cleantech coverage that helps to accelerate the cleantech revolution!

Harnessing the Full Spectrum for Solar Power

A conventional solar cell uses one kind of semiconductor, which captures light from one part of the spectrum. The new solar cell uses different materials, stacked in layers, that respond to different wavelengths. As explained by LBL writer Paul Preuss, the trick is to use one alloy, gallium arsenide nitride, but replace some of the arsenic atoms with nitrogen to create an intermediate energy band. This third band enables the semiconductor to respond to low and mid-energy wavelengths as well as the more “energetic” parts of the spectrum.

Lowering the Cost of Full Spectrum Solar Cells

In earlier trials, the researchers used different alloys that achieved full spectrum responses but involved very high production costs. The advantage of gallium arsenide nitride is that it is very similar to a conventional semiconductor, gallium arsenide, and it can be produced with a commonly used fabrication method involving chemical vapor deposition.

Full Speed Ahead to Full Spectrum Solar Cells

The Lawrence Berkeley breakthrough represents just one path to increasing the efficiency and lowering the cost of solar cells. Over at Ohio State University, a full spectrum solar cell is also under development, and Stanford is pursuing a new technology that cuts around the problem of solar cell efficiency loss due to high temperatures. And then of course there’s low cost solar paints on the horizon, new solar cell fabrication methods, and the use of low-cost materials for concentrating solar power…well, it may be just a bit too soon to say goody-bye to “yesterday’s energy” but we’re sure on our way.

Image: Moon by r w h on flickr.com.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it!! So, we've decided to completely nix paywalls here at CleanTechnica. But...
 
Like other media companies, we need reader support! If you support us, please chip in a bit monthly to help our team write, edit, and publish 15 cleantech stories a day!
 
Thank you!

Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Tina Casey

Tina specializes in advanced energy technology, military sustainability, emerging materials, biofuels, ESG and related policy and political matters. Views expressed are her own. Follow her on LinkedIn, Threads, or Bluesky.

Tina Casey has 3240 posts and counting. See all posts by Tina Casey