Connect with us

Hi, what are you looking for?


Clean Power

"Exotic Behavior" Shines a Light on Piezoelectricity

Lead-free piezoelectric materials could be used in highways to generate carbon-free electricity.A team of researchers from UC Berkeley and the U.S. Department of Energy’s Lawrence Berkeley Lab have discovered a new lead-free material that produces an electrical current when exposed to stress.  The phenomenon, called piezoelectricity, sounds exotic but it could some day become as common as backyard grills.


Piezoelectricity is a sustainable way to generate energy.  It works by applying pressure or stress to certain crystalline materials, including certain ceramics and even bone, so it’s a green alternative to burning fossil fuels.  Up to now, though, the most popular piezoelectric materials contain lead, a notorious neurotoxin.  The discovery of a lead-free material could open the door to a piezoelectric energy future in which people generate significant amounts of electricity just by moving through the civic infrastructure, from highways to flooring and revolving doors.

Piezoelectricity in Daily Life

Piezoelectricity actually is as common as backyard grills.  Push-button grill starters, and likewise pushbutton cigarette lighters, both use piezoelectric materials to strike a spark. Microphones and quartz watches are two other common products that use the piezoelectric effect.  Piezoelectricity also has numerous medical and engineering applications, especially in ultrasound equipment and testing devices for roads and bridges.  However, the severe health risks associated with lead in the environment make it clear that a more widespread application of lead-based piezoelectric materials is not a sustainable path to pursue.

Lead-Free Piezoelectricity

By removing the lead hazard, the Berkeley discovery could prompt the use of piezoelectric materials not only in infrastructure and buildings, but also in common consumer products that are exposed to stress, such as shoes or even T-shirts.  The researchers found that thin films of bismuth ferrite, an inorganic crystalline material associated with magnetic-electric phenomena, produce a piezoelectric effect when subjected to large amounts of properly focused strain.  Bismuth ferrite consists of crystal planes that alternate between oxygen and iron atoms, and oxygen and bismuth atoms (bismuth is a heavy, brittle metal used in cosmetics and medicines, and it is becoming more common as a replacement for lead in manufacturing).  Putting strain on the films causes the “exotic behavior” described by one researcher, in which the planes to move relative to each other and then revert to their former position when the strain is relaxed.  The researchers also note that in principle bismuth ferrite is just one among other crystalline lead-free materials that could be used to produce a piezoelectric effect.

Image: Nrbelex on

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Electrifying Industrial Heat for Steel, Cement, & More

I don't like paywalls. You don't like paywalls. Who likes paywalls? Here at CleanTechnica, we implemented a limited paywall for a while, but it always felt wrong — and it was always tough to decide what we should put behind there. In theory, your most exclusive and best content goes behind a paywall. But then fewer people read it! We just don't like paywalls, and so we've decided to ditch ours. Unfortunately, the media business is still a tough, cut-throat business with tiny margins. It's a never-ending Olympic challenge to stay above water or even perhaps — gasp — grow. So ...
If you like what we do and want to support us, please chip in a bit monthly via PayPal or Patreon to help our team do what we do! Thank you!
Written By

Tina specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Views expressed are her own. Follow her on Twitter @TinaMCasey and Google+.


You May Also Like

Clean Power

New Berkeley Lab study finds a dramatic increase in estimated project output coupled with a decrease in surrounding sound levels for future turbines as...

Clean Power

Berkeley Lab study shows how deep cost reductions in clean technology and India’s renewable and lithium edge can enable a pathway for cost-effective energy...

Clean Power

We are pleased to announce the recent publication of a new Berkeley Lab analysis — “Mind the Gap: Comparing the Net Value of Geothermal,...

Clean Power

Critics of wind and solar routinely raise concerns about how much land would be required to decarbonize the US power sector. Fortunately, the answer...

Copyright © 2023 CleanTechnica. The content produced by this site is for entertainment purposes only. Opinions and comments published on this site may not be sanctioned by and do not necessarily represent the views of CleanTechnica, its owners, sponsors, affiliates, or subsidiaries.