CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Clean Power Nano-sized crystals of cobalt oxide, an Earth-abundant catalyst, have been shown to be able to effectively carry out the critical photosynthetic reaction of splitting water molecules.
Image Credit: Roy Kaltschmidt

Published on March 7th, 2014 | by James Ayre

0

Artificial Photosynthesis — Kinetic Bottlenecks In Key Step Revealed, Improvements Coming

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

March 7th, 2014 by  

Significant kinetic bottlenecks in the processes of artificial photosynthesis — bottlenecks which if removed will boost the efficiency of these artificial systems — have been revealed by new research from the Lawrence Berkeley National Laboratory.

These bottlenecks were identified thanks to the researchers’ achievement of the first-ever, direct “temporally resolved observations of intermediate steps in water oxidation using cobalt oxide.” Cobalt oxide is a commonly used solid catalyst — mostly because of its relative abundance.

Nano-sized crystals of cobalt oxide, an Earth-abundant catalyst, have been shown to be able to effectively carry out the critical photosynthetic reaction of splitting water molecules. Image Credit: Roy Kaltschmidt

Nano-sized crystals of cobalt oxide, an Earth-abundant catalyst, have been shown to be able to effectively carry out the critical photosynthetic reaction of splitting water molecules.
Image Credit: Roy Kaltschmidt

The development of electrocatalysts that can efficiently and economically support the water oxidation reaction is one of the ‘keys’ to the development of an economically viable artificial photosynthesis technology. The identification of these bottlenecks represents a large step towards that goal.

Researcher Heinz Frei, a chemist with Berkeley Lab’s Physical Biosciences Division, explains: “The oxidation of water to molecular oxygen is a four-electron process involving multiple steps. We’ve obtained the first direct, temporally resolved observation of two intermediate steps in water oxidation using an Earth-abundant solid catalyst, cobalt oxide, that allowed us to identify the kinetic bottlenecks. With this knowledge, we can devise and design improvements on the cobalt oxide catalyst and its support environment to partially or completely remove these bottlenecks and improve the efficiency of water oxidation.”


The press release from the DOE/Lawrence Berkeley National Laboratory provides more:

In an artificial photosynthetic system, the oxidation of water molecules into oxygen, electrons and protons (hydrogen ions) provides the electrons needed to produce liquid fuels from carbon dioxide and water. This requires a catalyst that is both efficient in its use of solar photons and fast enough to keep up with solar flux in order to avoid wasting those photons. It should also be robust and affordable on a large-scale. Five years ago, a study led by Frei identified cobalt oxide in the form of single crystal nanoparticles as an excellent candidate for meeting the challenge. However, realizing the full catalytic potential of cobalt oxide nanocrystals requires a better understanding of the individual events in the four-electron cycle of water oxidation.

To provide this understanding, Frei, working with Miao Zhang and Moreno de Respinis, used a spectroscopic technique known as rapid-scan Fourier transform infrared (FTIR) spectroscopy.

“Prior to our study, it was not known whether the catalysis, which takes place on the surface of the cobalt oxide crystallites, happens at every cobalt center on the surface at the same speed, or whether a subset of cobalt sites does most of the work while other subsets are slow or merely spectators,” Frei states. “Our results show that there is a subset of fast sites where a considerable fraction of the catalysis takes place, and a subset of sites where the catalysis proceeds considerably more slowly. This discovery of these fast and slow sites and the proposed structural difference between two provides the basis for designing cobalt oxide surfaces with higher concentrations of fast sites.”

The new findings are detailed in a paper published in the journal Nature Chemistry.

Keep up to date with all the latest news on artificial photosynthesis and solar energy news here on CleanTechnica. Subscribe to our free solar energy newsletter or overall cleantech newsletter to never miss a story.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , ,


About the Author

's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.



Back to Top ↑