CleanTechnica is the #1 cleantech-focused
website
 in the world. Subscribe today!


Clean Power shutterstock_105061943

Published on March 6th, 2014 | by Guest Contributor

5

ANU, Trina Solar Develop 24.4% Efficient Solar Cell

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

March 6th, 2014 by  

Originally published on RenewEconomy.
By Sophie Vorrath.

The Australian National University has cemented its and Australia’s role as a key player in global solar energy innovation with the unveiling of a new high-efficiency solar cell, developed through a joint venture with Chinese solar PV giant Trina Solar.

shutterstock_105061943

Solar cells.
Image via Carlos Munoz/Shutterstock.

The product of two years’ research at the ANU Centre for Sustainable Energy Systems – a world-class R&D facility known for its development of Sliver solar cells, nano PV technology and hybrid PV/thermal parabolic trough concentrator systems – the laboratory-scale Interdigitated Back Contact (“IBC”) solar cell has been independently tested to deliver an efficiency of 24.4%, putting it in the league of the most efficient solar cells to date.

In an announcement on Tuesday, Trina described the collaborative achievement – the Solar Energy Research Institute of Singapore (SERIS) was also involved, via contract with Trina – as a “milestone in solar cell research.”

Attention will now turn to developing a commercial version of the solar cell, as well as an IBC PV module. Trina says a 125mm by 125mm commercial cell has already reached an efficiency greater than 22 per cent, and 238W for an IBC PV module (based on 72 cells) – both of which have been independently tested.

Trina also said it expected the IBC solar cell to be ready for industrialised mass production soon.

Professor Andrew Blakers, Director of the Centre for Sustainable Energy Systems at the ANU Research School of Engineering, said the ANU has been working towards developing highly efficient back contact silicon solar cells with both positive and negative metallic contacts on the rear surface.

The technology, says Blakers, allows the surface facing the sun to be uniformly black, without the metal electrodes present on most solar cells – an attribute which makes modules look better, while more importantly increasing electricity uptake per unit area.

“The results mean the laboratory cell technology can now be further developed for commercial solar cells,” Blakers said. “The work is expected to lead to commercial solar cells with improved efficiency, allowing more power to be generated from a given area of rooftop solar module.”

Trina, meanwhile, said it was “delighted” to collaborate with the ANU’s leading scientists. “We remain committed to engaging in effective partnerships with the best PV research centers, which are fundamental to delivering R&D breakthroughs,” said Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar.

The Chinese PV giant posted a positive set of FY 2013 results on Tuesday, with a 36.9 per cent increase in total net revenues on the previous corresponding period to $1.77 billion.

Driven by a weighty increase in PV module shipments – 2.58GW of modules were shipped in 2013, compared to just 1.59 GW in 2012 – the company generated a gross profit of $218.2 million and a gross margin of 12.3 per cent.

Despite this, Trina still managed to operate at a loss of $43.8 million in 2013, with a net loss for the full year coming in at $77.9 million – an improvement, albeit, on the losses of 2012.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , , ,


About the Author

is many, many people. We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people. :D



  • JamesWimberley

    The press release doesn’t say whether this is a monocrystalline or polycrystalline cell. If the former. it’s a useful small improvement on SunPower’s current 21% efficiency. If the latter, it’s a step change from the current best-in-class of around 17%.

    • dips

      Isn’t it obvious that it is on mono. Moreover, Trina does not talk about panel efficiency yet. So, comparison with SunPower is not right. In any case, there must be a small (about 2 % I would guess) improvement over SunPower cell which in itself is commendable considering the efficiency regime. Keep going Trina.

  • tibi stibi

    can’t wait to see these improvements in the shops!

    • http://zacharyshahan.com/ Zachary Shahan

      Trina Solar’s one of the top 10 module suppliers in the world. Sure it will make it in there.

      • tibi stibi

        i just got an add from sunpower. they are selling 21,5% panels now.
        i don;t see them jet in the shops in holland so not sure what the price will be…

Back to Top ↑