CleanTechnica is the #1 cleantech-focused
website
 in the world.


Energy Efficiency LED cheaper research

Published on June 13th, 2013 | by Guest Contributor

3

Cheaper LEDs From Silicon-based Nanoparticles?

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

June 13th, 2013 by
 

Via the good folks at the University of Washington, here’s some positive LED research news. With some luck, these researchers might just help to bring down the price of LEDs. Check out the full repost.

By Michelle Ma

Light-emitting diodes, or LEDs, are the most efficient and environmentally friendly light bulbs on the market. But they come at a higher up-front price than other bulbs, especially the ones with warmer and more appealing hues.

LED cheap

LumiSands cofounders Chang-Ching Tu, left, and Ji Hoo with with a demo showing the warmer, softer hue of the LED bulb (left side) after a film embedded with their red-emitting silicon nanoparticles is placed underneath. The box on the right is an identical, standard LED bulb.
Image Credit: Mary Levin, UW

Researchers at the University of Washington have created a material they say would make LED bulbs cheaper and greener to manufacture, driving down the price. Their silicon-based nanoparticles soften the blue light emitted by LEDs, creating white light that more closely resembles sunlight.

The company, LumiSands, started as a graduate student project for CEO Chang-Ching Tu, who received his doctorate in electrical engineering at the UW and just completed a stint as a postdoctoral researcher in materials science and engineering. This spring, the start-up company spun out from the UW Center for Commercialization, a process that its two founders hope will lead to signing a commercialization license for the technology.

LEDs give off light when electrons move through a semiconductor material. They are more efficient than standard incandescent or fluorescent bulbs, but they’re also pricier. That’s partly because within each LED lamp, expensive substances known as rare-earth-element phosphors help to soften the harsh blue light that LEDs naturally emit.

But these rare-earth elements are hazardous to extract and process. China controls nearly all of the market for these materials, which has quadrupled the average price for the past several years.

That’s where LumiSands comes in. The company uses silicon, derived from sand, instead of rare-earth elements to convert part of the blue light emitted by LEDs into greens, yellows and reds. The resulting light looks more like sunlight.

LED cheaper research

Researchers use a black light to show the photo-luminescence of their silicon nanoparticles.
Image Credit: Mary Levin, UW

The crew of two plans to sell directly to LED-bulb manufacturers that are looking to transition away from increasingly more expensive materials to make the lights.

“Hopefully, manufacturers could substitute traditional rare-earth elements with our material with minimal additional steps,” said Ji Hoo, a UW doctoral student in electrical engineering and co-founder of LumiSands. “It will be cheaper, better-quality lighting for users.”

Incandescent bulbs give off light that’s most similar to sunlight – and easiest on our eyes – but the bulbs are inefficient and produce a lot of heat. Fluorescent bulbs, seen most commonly as long tubes in overhead office light fixtures, are more efficient than incandescent lights, but they contain mercury, posing health and environmental concerns.

LumiSands etches off nano-sized particles from wafers of silicon. The element, which usually doesn’t emit light, can start to glow when its crystalline particle size is smaller than 5 nanometers. The surface is reinforced through a wet-chemistry process. When the red-emitting silicon nanoparticles are added to LED bulbs, the light becomes softer and warmer in hue.

new LED University of Washington

This device tests the quality and reliability of the silicon nanoparticle phosphors that LumiSands created to use in LED lighting.
Image Credit: Mary Levin, UW

“The beauty of our technology is to create a highly efficient fluorescent material by using silicon rather than rare-earth elements or other types of heavy-metal compound semiconductors,” Tu said. “The manufacturing process can be performed in a basic laboratory setting and is easy to scale up.”

LumiSands plans to tweak the red technology before moving on to other colors such as yellow and green, which will enable LEDs to cast a white light with no rare-earth elements.

The company has received funding from the National Science Foundation, the Washington Research Foundation and the W Fund. It received an honorable mention in the 2012 Foster School of Business Environmental Innovation Challenge and a top award in the 2012 Jones Milestones/Foster Accelerator mentorship program.

Now, LumiSands is finishing a prototype of the technology and sending samples to lighting industry partners for evaluation. It will apply for competitive phase two NSF funding, which could launch the company toward manufacturing its technology within a year.

 

For more information, contact Tu and Hoo at info@lumisands.com or 206-604-4394.

Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.

Print Friendly

Share on Google+Share on RedditShare on StumbleUponTweet about this on TwitterShare on LinkedInShare on FacebookPin on PinterestDigg thisShare on TumblrBuffer this pageEmail this to someone

Tags: , , , ,


About the Author

is many, many people. We publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people. :D



  • JamesWimberley

    I’ve said it before here: imitating sunlight is not the goal for lighting; it’s too hot – subjectively, cold. What we like is firelight, the black-body radiation from incandescent soot particles at 1500 Kelvin or so. The inefficient tungsten bulb, also black-body radiation, is a bit hotter than firelight but close enough for visual comfort, and far below sunlight.

    • sambar

      Actually, life on earth has developed under a sun that emits a light of approx. 5600K at noon, and turns more red as we near sunset. Before the invention of artificial light the red hue would continue around the fire, and our bodies would relax and prepare for sleep. The most appropriate lighting would follow nature in changing color temperature through the day.

      Goodnight.

      • Bob_Wallace

        And probably move to about 4000K at night.

        You know, moonlight?

        1500k only when we slay a bison….

Back to Top ↑