Nano-Flowers Made from Semiconductor Material Will Allow Next-Gen Energy Storage & Solar Cells

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

 
Nano-flowers, newly created structures composed of germanium sulfide (GeS), have the potential to open the door to next-generation solar cells and energy storage devices. These ‘flowers’, created by researchers from North Carolina State University out of a semiconducting material, feature an enormous surface area, thanks to being covered in many extremely thin petals.

20121011-230200.jpg

“Creating these GeS nanoflowers is exciting because it gives us a huge surface area in a small amount of space,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper on the research. “This could significantly increase the capacity of lithium-ion batteries, for instance, since the thinner structure with larger surface area can hold more lithium ions. By the same token, this GeS flower structure could lead to increased capacity for supercapacitors, which are also used for energy storage.”

 
The flower-shaped structures were created by researchers through a process that begins with heating GeS powder in a furnace so that it vaporizes. After that, the vapor gets blown into a cooler area of the furnace, “where the GeS settles out of the air into a layered sheet that is only 20 to 30 nanometers thick, and up to 100 micrometers long. As additional layers are added, the sheets branch out from one another, creating a floral pattern similar to a marigold or carnation.”

“To get this structure, it is very important to control the flow of the GeS vapor,” Cao says, “so that it has time to spread out in layers, rather than aggregating into clumps.”

GeS behaves similarly to graphite, settling into structurally organized layers and sheets. It’s considerably different than graphite with regards to its atomic structure though, GeS is an excellent material for creating solar cells, very effective at converting solar energy into electricity. GeS also happens to be relatively inexpensive and is non-toxic, another huge plus when it comes to solar cells. Currently, many of the manufacturing processes used by solar cell producers are ‘expensive’ and make use of toxic materials, though there have been continuing improvements in these areas the last few years.

The research paper, called “Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS,” was just published in the journal ACS Nano.

Source: North Carolina State University
Image Credit: North Carolina State University

Reposted from Solar Love with permission.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica.TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

James Ayre

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy.

James Ayre has 4830 posts and counting. See all posts by James Ayre