A Man's Home is His Renewable Energy Castle, Thanks to New Fuel Cells

Sign up for daily news updates from CleanTechnica on email. Or follow us on Google News!

MIT researchers envison combination of solar energy and fuel cells to power buildingsA new fuel cell being developed at the Massachusetts Institute of Technology is set to take households a giant  step closer to energy independence. MIT researchers envision an integrated system consisting of a solar installation and a fuel cell. During the day, the solar array produces electricity to power the household, and to charge batteries including electric vehicle batteries. At night, the system would shift to the fuel cell, which would produce additional electricity as well as clean drinking water.

[social_buttons]

The key  is reducing the cost of fuel cells, which right now are expensive partly due to the use of platinum as a critical component. That’s where the new research comes in. At the recent 240th national meeting of the American Chemical Society, the MIT team described a powerful new catalyst that could help make the solar-fuel cell integrated system more affordable.

Chip in a few dollars a month to help support independent cleantech coverage that helps to accelerate the cleantech revolution! The MIT Fuel Cell Breakthrough

In the integrated solar and fuel cell system, solar energy would provide electricity to run an electrolyzer (a device that breaks down plain water into hydrogen and oxygen). It requires a catalyst to jumpstart the reaction, and until now the catalysts of choice have been based on platinum, which aside from being expensive involves the use of potentially toxic chemicals. MIT’s new catalyst requires no toxic chemicals and has the advantage of boosting oxygen production 200-fold. To complete the cycle, at night when the solar array ceases operation, the stored hydrogen and oxygen produce electricity in the fuel cell, and the byproduct of this reaction is potable water.

The Road to Mass Market Fuel Cells

Just about any energy source could be used to run the electrolyzer. The MIT ideal seems to be renewable energy generated onsite, but buildings that have no such options could rely on central renewable-energy power stations (which requires an improved grid, but that’s another story). Another low cost route is being explored by the the U.S. Navy, which is developing microbial fuel cells that operate through the digestive exertions of microrganisms that can feed on ambient nutrients in mud or seawater. Aside from MIT’s research, other institutions are also working toward fuel cells that eschew platinum in favor of lower cost materials, one example being a ceramic-based fuel cell under development at Georgia Tech.

Image: Castle by Jim Linwood on flickr.com.


Have a tip for CleanTechnica? Want to advertise? Want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Latest CleanTechnica TV Video


Advertisement
 
CleanTechnica uses affiliate links. See our policy here.

Tina Casey

Tina specializes in advanced energy technology, military sustainability, emerging materials, biofuels, ESG and related policy and political matters. Views expressed are her own. Follow her on LinkedIn, Threads, or Bluesky.

Tina Casey has 3275 posts and counting. See all posts by Tina Casey